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MECHANICS OF COMPOSITE STRENGTHENING*

by B. Walter Rosen

ABSTRACT

The development of very high strength and stiffness filaments has
motivated considerable interest in the strength of fiber reinforced compos-
ites. The purpose of the present paper is to describe studies of the effect of
fiber and matrix characteristics upon the mechanics of deformation and
fracture of fibrous composites. These studies consider the response of a
matrix reinforced by uniaxially oriented fibers. The strength of such a ma-
terial is treated for the cases where the failure criteria are maximum tensile
of compressive load carried by the composite in a direction parallel to the
fiber orientation. Analytical models for failure in these two modes are de-
veloped. Comparison is made with available experimental data. The tensile
failure model is a statistical one. A new experimental technique to investi-
gate the validity of this model is described. All of the studies included at-

tempt to relate composite performance to constituent properties.

* This research was supported by the National Aeronautics and Space
Administration under contract NASw-817.
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SUMMARY

The existence of many very high strength and stiffness filaments has
motivated considerable interest in the selection of appropriate matrix ma-
terials to obtain fibrous compositeé which can utilize these outstanding prop-
erties. It is the purpose of the present paper to describe studies of the in-
fluence of both fiber and matrix characteristics upon the mechanics of
deformation and fracture of fibrous composites. The aim is to obtain the
information needed to select appropriate constituents for given applications.
These studies consider the response of a matrix reinforced by uniaxially
oriented fibers. The strength of such a material is treated for the cases
where the failure criteria are maximum tensile and compressive loads car-

ried by the composite in a direction parallel to the fiber orientation.

When the response of a composite is to be measured in terms of
average stress and average strain, the material can be represented by an
effective homogeneous but anisotropic material having the same average re-
sponse. For the case of a matrix containing uniaxially oriented fibers, the
effective material is transversely isotropic and is therefore characterized
by five elastic constants. Various analytical approaches to the evaluation of
these constants as functions of the constituent properties have been made and
the relationship between constituent properties and elastic moduli is recason-

ably well understood.

However, when a fracture criterion is desired, an understanding of the
average stress-strain response is no longer sufficient, and consideration
must be given to internal irregularities in the state of stress. The present
paper treats these problems for both ultimate compressive and tensile

strengths.

The failure of a fibrous composite under a uniaxial compressive load
is considered first. A possible failure mechanism for this case is the hy-
pothesis that the individual fibers buckle in a short wave length pattern in a
fashion analogous to the buckling of a column or plate on an elastic foundation.
An approximate evaluation of the influence of fiber geometry and fiber and

matrix moduli upon the composite compressive strength can then be made.



These results are compared to the results of an experimental program which
utilized hollow and solid glass fibers in several matrix materials. The test
specimens were short columns designed to achieve a compressive strength

failure.

The major portion of the present paper is devoted to a study of the
mechanics of tensile failure of a fibrous composite. The study is based upon
consideration of the phenomena which occur subsequent to an initial internal
fracture. The strength of the brittle fibers are considered to be defined by
a statistical distribution function. Thus, the initial fracture is likely to oc-
cur in a fiber. The resulting perturbation of the local stress field is treated.
An approximate solution indicates the nature of the interface stress distri-
bution as well as stress concentrations in nearby fibers. This stress field
could result in adjacent fiber fracture, that is a crack propagation effect; or
in separation along the interface. A third possibility is that the stresses in
the vicinity of an initial fiber fracture do not produce further fracture and
that increasing load produces a distribution of fiber fractures corresponding
to the initial distribution of weak points in the fibers. The continued accumu-
lation of these fractures would produce a weak cross-section at which the
remaining unbroken fibers could no longer transmit the applied load. Instan-

taneous tensile failure would then occur.

A statistical tensile failure model of a fibrous composite is established
on this basis. The mechanical characteristics of fiber and matrix are utilized
to obtain a statistical failurc definition. An experimental program to investi-
gate the validity of the model is described. The specimens are thin glass-
reinforced epoxy specimens which are observed photoelastically during the
loading process. An attempt is made to correlate the tensile properties of

constituents and composites.

All of the studies included attempt to relate composite performance to
constituent properties. In general, the constituents have been treated as
homogencous isotropic materials. The implications of the assumptions are

treated in the comparison with experimental data.




TENSILE STRENGTH

The tensile failure of a uniaxially stiffened matrix has been studied
previously by several investigators. The early findings are summarized in
Ref. 1. The simplest failure model treated assumes that a uniform strain
exists throughout the composite and that fracture occurs at the failure strain
of the fibers alone (e.g. Ref. 2). The effect of a non-uniform strain distri-
bution was studied in Ref. 3 which suggests the influence of fiber flaws on
composite failure. In Ref. 3, failure occurs when the accumulation of fiber
fractures resulting from increasing load shortens the fiber lengths to the
point that further increases in load could not be transmitted to the fibers be-
cause the maximum matrix shear stress was exceeded. Thus, composite
failure resulted from a shear failure of the matrix. There continues to be
substantial disagreement as to the actual mechanics of failure within such a

composite,

The model treated in the present analysis (see Ref. 4) is shown in
Figure 1, and consists of a set of parallel fibers which are assumed to be
strong and stiff with respect to the matrix material in which they are im-
bedded. The fibers treated are high strength brittle fibers whose strength
is dependent upon the degree of surface imperfection. When such a composite
is subjected to a tensile load a fiber fracture will occur at one of the serious
flaws or imperfections. When such a fiber breaks, the stress in the vicinity
of the broken fiber is perturbed substantially so that the axial stress in the
fiber vanishes at the fiber break and gradually builds back up to its undis-
turbed stress value due to shear stresses being transferred across the fiber
matrix interface. The general form of the local stress pattern in the fiber is
shown in the figure. When such a break occurs, several possibilities for the
future behavior of the composite exist. First, the high interface shear
stresses could produce interface failure which could propagate along the
length of the fiber reducing the fiber effectiveness over a substantial fiber
length. In order to achieve the potential of the fiber strength it is necessary
to study and determine the fabrication conditions which will yield an interface
sufficiently strong to withstand this interface shear failure. This can be done

either through the use of a high strength bond or a ductile matrix which



permits redistribution of the shear stresses. In the latter case the length of
fiber which is affected by the break will increase as it will take a longer
distance to retransmit the stresses back into the fiber at the low stress
level of a ductile matrix. With a strong bond, the interface conditions can be
overcome as a potential source of failure, and a second possibility is that
the initial crack will propagate across the composite resulting in failure.
This is influenced by the fracture toughness of the matrix and again since it
is clear that with brittle fibers one can always expect a fracture to occur at
a relatively low stress level, it is important that the fracture toughness of
the matrix material be sufficient to prevent the propagation of this crack
across the composite. If these two potential modes of failure are arrested

it will then be possible to continue to increase the applied tensile load and to
obtain breaks at other points of imperfection along the fibers. Increasing the
load will produce a statistical accumulation of fiber fractures until a sufficient
number of ineffective fiber lengths in the vicinity of one cross-section inter-
act to provide a weak surface. At the point of incipient fracture all of the

failure modes described may very well interact to produce the final fracture.

This statistical model of failure has been discussed in some detail in
the previous work (Ref. 4). This portion of the present study is concerned
with an cxtension of certain aspects of this problem to clarify the relation-
ship between predicted results and experimental data, and to emphasize the
potential for application of this analysis. A brief review of the method will

be presented first.

The model which is used to evaluate the influence of constituent prop-
erties upon the tensile strength considers that in the vicinity of an individual
break a portion of cach fiber may be considered ineffective. The composite
may then BC considered to be composed of layers of dimension equal to the
ineffective length. Any fiber which fractures within this layer will be unable
to transmit a load across the layer. The applied load at that cross section
would then be uniformly distributed among the unbroken fibers in each
layer. The effect of stress concentrations which would introduce a non-
uniform redistribution of these loads is not considered initially. A segment

of a fiber within onc of these layers may be considered as a link in the chain




which constitutes an individual fiber. Each layer of the composite is then a
bundle of such links and the composite itself a series of such bundles. Treat-
ment of a fiber as a chain of links is appropriate to the hypothesis that frac-
ture is due to local imperfections. The links may be considered to have a
statistical strength distribution which is equivalent to the statistical flaw dis-
tribution along the fibers. The realism of such a model is demonstrated by
the length dependence of fiber strength. That is, longer chains have a high
probability of having a weaker link than shorter chains, and this is supported
by experimental data for brittle fibers which demonstrate that mean fiber
strength is a monotonically decreasing function of fiber length. For this
model it is first necessary to define a link dimension by consideration of

the perturbed stress field in the vicinity of a broken fiber. It is then neces-
sary to define the statistical strength distribution of the individual links
which can be obtained indirectly from the experimental data for the fiber-
strength-length relationship. These results can then be used in the statistical
study of a series of bundles and utilized to define the distribution for the
strength of the fibrous composite. (Statistical techniques for a series of
bundles have been studied in Ref. 5 for application to particle reinforced
composites. ) The fibrous composite has been treated in Ref. 4 and portions
of the following analysis are reproduced here from that reference for com-

pleteness.

Statistical Analysis of the Model

The model, as described in the previous section, consists of a chain
of bundles of fiber links. The links have a length, &, which is to be deter-
mined subsequently, and are characterized by a distribution function £(0) and

the associated cumulative distribution function F(o), where:
o
Fo) = [ f(0) do (1)
o

and 0 is the fiber stress. The experimental method for defining the distribu-
tion function will be described subsequently. With this distribution known,
the distribution function for bundle strength can be obtained and then the com-

posite will be treated as a chain of bundles, and weakest link statistical



theorems will be applied. This leads to the desired statistical definition of

composite strength.

For a bundle of links, Daniels (Ref. 6) has shown that for a large
number, N, of fibers the distribution of the average fiber stress at bundle

failure, OB’ approaches a normal distribution with expectation:

3y = o [1 ] F(om)] (2)
and standard deviation:
d)B =0 F(om)[l-F(om):\gl/2 N -1/2 (3)

The associated density distribution function is thus:

The maximum fiber stress, Gm, is evaluated by maximizing the total
load, which may be expressed as the product of the fiber stress and the num-

ber of unbroken fibers. Hence:

d —
d_O'gj [1 -r('})]% -0 (5)

~ =
]

J
m

With the bundles characterized by eq. (4) and the associated cumu-

lative distribution function, £ (Q'B), given by:

ds (6)

The bundles may be treated as links in a chain and weakest link thcorems

can be applied to define composite failure. For m c¢lements forming a chain




the distribution function, A (OC), for the average fiber stress at composite

failure, GC, is defined by:

A (cyC = mw(GC))[l - Q(oc)]m-l (7)

That is, A (OC) dOC is obtained by multiplying the probability that one bundle
fails between 0. and o+ dc (which is equal to w(c )do ), by the probability
that all remalmng (m 1) elements exceed 0. + do in strength (which is equal
to [1 - O ) ]m- ) and considering that fallure can occur in any of the m
bundles. Th1s approach will be applied to glass reinforced plastic composites

below.

Definition of Model Parameters

For the statistical model, the link dimension and the link strength
distribution function are required. The former is defined by a shear lag type
approximate analysis of the stress distribution in the vicinity of a broken end.
The model is shown in Figure 2. Details of the analysis are presented in
Appendix A. This yields the following result for the ineffective length, 6,

normalized with respect to the fiber diameter:

1/2 1/2
1 - Ve 2
_5 ( : ) G COSh-l |:1 + (l - ) :| (8)

dg 1/ b 2 (1 -o)
Ve
where
V¢ = fiber volume fraction
Ef = fiber Young's modulus
Gb = binder shear modulus
¢© = fraction of the undisturbed stress valuce below which fiber is

considered to be ineffective.

Figure 3 shows the variation of fiber incffective length with constitu-
ent moduli for various fiber concentrations. These ineffective lengths are

relatively small; however, they are based upon an elastic analysis which



yields stresses as shown in Figure 4. It is clear that for many composites
the matrix shear stresses will exceed the elastic limit of the material. The
point at which the elastic limit is reached is indicated on each curve of
Figure 4 for a matrix shear yield stress of one tenth the fiber strength.
Since for high concentrations most of the curves are above the elastic limit,
even for this comparatively high strength binder, further inelastic analysis
is required. As a first approximation to the inelastic problem an approxi-
mate elastic-plastic analysis has been performed to assess the effect of in-
elasticity on ineffective length. This combination of linear elasticity to a
given yield stress and then constant stress for all larger strains is a gross
idealization of the binder stress strain curve, but it does enable an estimate
of the nature of inelastic effects. The resulting effects are shown in Figure 5
where the elastic and elastic-plastic results for otherwise identical com-
posites are compared, for a matrix yield stress of 5% of the fiber tensile
strength. The increase in ineffective length is apparent and, as will be

shown, detrimental.

With the ineffective length and, synonomously, the fiber link length
defined, the statistical strength distribution of the links can be deduced from
fiber test data. This process is detailed in Appendix B. The result is that if
the fiber strength distribution, g(0), and the associated cumulative distribu-
tion function, G(0), are known for fibers of length, L, then the desired dis-

tribution function, £(0), for the links of length, 9, is given by:

(1/n) -1
flo) = &9 [1 - G(G)] (9)

n

where L = nb

Thus, if for illustrative purposes, one treats fibers characterized

by a Weibull (Ref. 7) distribution function:

g(0) = LaBo® " ! exp (-quB) (10)




where o and B are the two parameters characterizing the distribution, it is

found that:
£0) = a880P! exp (cabo’) (11)

Substitution of eqs. (8) and (11) into the results of the previous sec-

tion defines the composite strength distribution function, XA (Gt). In particular

the statistical mode, o, , is found by setting:

t
Ay (12)
%t
which yields:
5 -1/8
O, = Vg (o dBe) (13)

where o and B are the constants defining the link strength and are deter-
mined by experimental tests of fiber strength vs. length as described pre-
viously. 0§ is the ineffective length defined by a fiber shear stress analysis

and e is the base of natural logarithms.

The results of the preceding sections are used in eq. (13) to compute
composite strength. The predicted composite failure stress is plotted in
Figure 6 for the range of ineffective lengths of one to one hundred fiber diam-
eters, The range one to ten generally corresponds to the elastic predictions
(se2 Figure 3) and the range ten to one hundred to the inelastic predictions,
Also shown in Figure 6 are the effects of variations in fiber characteristics.
Curves are presented to show the effect of an increase in the dispersion, as
measured by a 10% change in B, and of a decrease in the reference strength

l/B.

as measured by a 10% change in o~ The failure stresses shown neglect
the effect of binder extensional stresses and hence a composite failure stress
is obtained by multiplying the value for Ve = 1.0 (which is the stress based

on fiber area alone) by the actual fiber volume fraction.



Implications of the Failure Model

One of the reasons for the existence of many tensile failure models
is that, for gross behavior, there are many similarities in the predictions
which are obtained from widely diffzring models. Consider first the influ-
ence of volume fraction upon strength. In eq. (13) the ineffective length is
a function of fiber volume fraction, Ve This function is given in eq. (8)

which for defined constituents can be written as:

5 1 - v 1/2\1/2

T\ a4)

f v

f

and from eq. (13)
-1/28
sk 1l - Vfl/z
% = %retVt| T 172 1)
VE

where Oref is a reference stress level which 1s a function of fiber and ma-

trix properties.

This equation is plotted in Figure 7 (for B = 7.7, which is a typical
value for commercial E-glass filaments) where it is compared with the rule

of mixtures value, namely:

Ot = Oref Ve

(16)
The tensile strength of the matrix has been neglected since it is usually of
little importance in this sense except at low fiber volume fractions. The curve
of eq. (15) does not go to unity at a fiber volume fraction of unity because the
maximum packing density of fibers is a hexagonal array for uniform diam-
eter fibers with Ve = 0.904. The proximity of the two curves indicates the
hazard of inferring from agreement with experimental data that the analysis
which generated one or the other curve is a correct model of the failure

process.

The next problem is the question of selecting a reference fiber

strength with which to make comparisons between composite performance

10




and expected composite performance. In treating fibers which are charac-
terized statistically, the hazard of using a mean value should be quite ap-
parent from the previous observations of the variation in fiber strength.
Thus the strength value does not have a meaning unless there is a length
value associated with it. Consider fibers characterized by eq. (10) and
composed of n links of length 8, where L = nd, which links are charac-

terized by:

8

f (o) = CL@BOB-I exp (-0 60 "7) (17)

The kth moment of such a distribution function is defined by:

M, :6[ oX £(0) do (18)

The mean, T, and standard deviation, s, are defined in terms of this

moment function as follows:

al
g

1 (19)

s = [MZ-MIZ] 1/2 (20)

Substitution of (17) and (18) into (19) and (20) yields:

5 = (aé)'l/BT(l+1/B) (21)
s = (aé)'”B[I"u +2/8-T%0 + 1/B)] (22)
Similarly, for fibers of length, L, eqgs. (11), (18) and (19) yield the mean
strength of such individual fibers, 61_,’ as:
-1/8 )
5 =Ly Pra + 179 (23)

L

11



It is now possible to answer the question: what is the relationship be-
tween the composite strength (the statistical mode) and the mean strength

of individual fibers of length, L? The answer is:

Ot;:: 8 -1/8 (B'e)-l/B (24)
'-&'I:' = <17> T'(1+1/8)

It is of interest to plot this strength ratio as a function of the fiber coefficient

of variation which is obtained from eqs. (19) and (20) as:

[ru +2/8)-T2%0 +1/p]t2

T'(1 +1/8) (22)

s
5

Note that for the Weibull distribution, this ratio is independent of fiber gage
length. Simultaneous solution of eqs. (24) and (25) for selccted values of
L/&8is achieved by varying B. The results are plotted in Figurc 8 where com-
posite strength is plotted as a function of the fiber coefficicent of variation,
that is, the standard deviation divided by the mean valuc at that samec length.
Thus it is seen that in dealing with composites of length cqual to onc incffec-
tive length, that is the basic bundle of fiber links of the model previously de-
scribed, the mode of the bundle strength is slightly lower than the mecan
strength of individual fibers and departs from this valuc as the variation in-
creases. The other curves show that as the length ratio incrcases, as is the
case for reasonable specimens where the fiber length is large comparced to
the ineffective length, one would expect from this analysis that composite
strength would be somewhat larger than the mean strength of fibers of the
same length. And since these numbers are close to one, for coefficients of
variation as large as 15%, it is easy to intcerpret the composite performance
as having been equal to some fraction of the fiber performance. In gencral,
the composite strength indicated here would not be achieved becausce the
damage to the fibers during the fabrication process changes the population
characterization. Curves of this type then have an important use in assess-
ing how far the composite deviates from its potential strength value becausc

of additional damage introduced after the time of the measurement of the
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fiber strength. To emphasize the point, note that if one tests fibers of a given
length and then tests a composite and compares the two strength values,
these results indicate that, in general, the numbers are expected to be close
together for fibers which do not have extreme variations. However, the

fact that they are close together does not indicate that there is any under-
standing of the mode of failure. Thus, one may consider the experimental
data to support the theory that failure is gnverned by the rule of mixtures

or that failure is governed by this statistical fracture theory. Both yield
similar results for this gross effect, yet the different models suggest dif-
ferent methods of increasing the composite strength. The importance of
obtaining a correct model for the mechanics of fracture lies in the potential

for achieving improved composites.

Experimental Program

The validity of the present model was investigated by a new experi-
mental technique initially described in Ref. 4. This experimental program
was directed toward making possible the observation of the failure mechan-
ism during the actual loading process of the composite. The experimental
model is shown in Figure 9 and consisted of a single layer of glass fibers
imbedded in an epoxy matrix and loaded in tension parallel to the fibers. In
the present extension of the study, fibers of a diameter which is large com-
pared to commercial fibers were used. These were 3-1/2 mil E-glass fibers
furnished through the courtesy of Narmco R&D. The fiber spacing was rela-
tively close and the thickness of the specimen was only slightly larger than
the diameter of the fiber. The overall specimen gage section dimensions
were a 1/2" width, a 1" length and a thickness of about four thousandths of
an inch. The fiber volume fraction was approximately 50%. The specimen
was observed photoelastically during the test process in a fashion such that
the unloaded specimen appears black. The major contributor to the photo-
elastic effect is the glass fibers and as they are loaded the fibers will
brighten. Thus, when the fiber is at high load and appears bright a broken

fiber will result in a zero stress region which is dark.
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The fibers used in these specimens were tested individually at three
different gage lengths and the results are plotted in Figure 10 in the form of
average strength as a function of gage length. To indicate the effect of the
matrix properties upon the composite, two test series were conducted utiliz-
ing epoxies which were very nearly identical except that one specimen had
a flexibilizer added to it. This results in a decrease of the elastic modulus
and an increase in the total strain to failure as shown in Figure 11. The
test results are presented in Table 1. Typical photographic sequences of

one specimen from each group are presented in Figures 12 and 13.

At less than 50% of the ultimate load, individual fiber fractures are
observed. Since the fractured fiber in the vicinity of the fracture is un-
stressed the color returns to the original dark color. Thus, breaks appear
as a short dark rectangular area with a thin white line across the center.

The length of this dark area is the ineffective length of the fiber. As the load
increases, the fibers fracture at random locations. Although there are stress
concentrations in the vicinity of the breaks, the variation in fiber strength
generally more than offsets the effect of such concentrations. Hence, the
breaks occur randomly rather than cumulatively at the site of the initial
break.

The effect of matrix properties on the character of the results is
emphasized in Figure 14. Figure l4a is a reproduction of the picture at 99%
of ultimate load of 3 1/2 mil E-glass fibers in an epoxy having a modulus of
0.48 x 106 psi. The fiber ineffective lengths are on the order of 10 diameters
and distribution of fiber breaks is random. Figure 14b shows the similar
specimen using a matrix material of modulus 0. 28 million psi again taken
at 99% of the maximum load. Here it is seen that (1) the incffective lengths
are substantially larger, being on the order of 30 diameters and (2) that the
number of breaks are smaller and (3) the effect of stress concentrations is
larger. Since the ineffective lengths are larger, it takes fewer of them to
produce a weak cross section and hence failure of the composite. The role
of the matrix in confining the detrimental effect of perturbations of the stress
field which result from a fiber break are clearly evident. Thus, it is seen

that although a ductile matrix is desirable from the point of view of alleviating
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the stresses and preventing interface failure, and also for having a higher
fracture toughness, a strong and stiff matrix would have a greater effect

on confining the perturbations to the stress field thus producing a beneficial
effect for the statistical failure model. Experiments using constituents which
trade off these various factors are sorely lacking, and the proper evaluation
of the relative merits of various failure models will require more experi-
mental work. It is hoped that the experiments that have been described here

can be extended to aid in this work.

Since the test data of Figure 10 yielded a straight line and since the
Weibull distribution of eq. 10 would also produce such a straight line, as is
apparent from eq. (23), the fiber test data can be used directly in the ana-
lytical model to predict composite strengths. This has been done and the
results are presented in Figure 15 based on the fiber diameter of 3-1/2 mils
for the experimental fibers used. The curve is linear on this logarithmic
plot where the ineffective length ratios one to ten are appropriate to elastic
matrix materials and the range 10 to 100 is the appropriate range for the
inelastic results. The two test points previously described (average values
from Table 1) are shown on this plot and it is seen that the two appear to
have the trend of the analytical result but the strength levels are substantially
below those shown., Several reasons exist for this; one important one being
the fact that the fiber strength values of Figure 10 cannot be extrapolated to
very short fibers since data (e. g. Ref. 8) show that the curve flattens out
at very short lengths. Since the ineffective length, for a practical composite,
is a very short fiber length, one must reconsider what amounts to an extra-
polation of the straight line of Figure 10 down into the short fiber range. To
do this consider some simple fiber populations; for example, the rectangular
distribution shown in Figure l6a. Given this simple rectangular distribution
function for the links in a fiber chain the cumulative distribution function is
readily obtained as shown in Figure 16b. The chain representing a fiber con-
taining n links would have a distribution function of the general shape shown
in Figure 16c¢ and its associated cumulative distribution function as shown
in Figure 16d. However, it appears from data, for glass fibers for example,

that the general characteristics of the distribution function indicates that the
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bulk of the fibers fail within a finite band at high stress level and occasional
fibers fail at small stress levels so that an idealized link distribution func-
tion would look more like that shown in Figure 17a. Here the bulk of the
fibers are shown as in the preceeding simple rectangular distribution func-
tion with a small portion of the population isolated at a lower stress level.
The effect on the cumulative distribution function for the fiber lengths is
trivial. It departs from zero over the lower range as opposed to running
along the axis to the stress Oq but the value p can be quite a small value.
However, if one now looks at the effect of this small additional low stress
group on the strength of a chain it is seen that there exists a distribution
function which has two peaks, where the maximum value of the two peaks
are as shown, and also the cumulative distribution function is rather drastic-

ally modified. The analysis defining these results is presented in Appendix B,

For p arbitrarily small there is some large n value which will suf-
ficiently diminish the right hand peak of Figure 17C with respect to the left
hand peak so that a long enough chain will soon have its strength dominated
by the low stress level group of the population. Figure 18 shows the number
of elements n required to make these two peaks equal to one another as a
function of p, the fraction of the population in the low strength region. The
number of elements required is a function of the ratio of the width of upper
rectangular band, 04 - 03, to the width of the lower rectangular band,

G, = 0y- Results are shown for three different values of this ratio. It can

be seen that even for fractions of the population in the low strength region as
low as 1% only several hundred elements are required before the lower peak
equals the upper peak. The influence of the distribution of fibers between the
two different regions is shown more clearly in Figure 19, in which the aver-
age fiber strength is plotted as a function of the fiber length where the dis-
tribution function for the individual elements is as shown in the lower left
portion. Here the upper band is twice the width of the lower band and only
1% of the link elements are considered to be in the lower band. The result
for the mean strength curve very closely simulates the experimentally ob-
served bilinear distribution of strength versus length. It is considered

significant that distributions of this form can reproduce the experimental
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data. Evidently the prospects are encouraging for using such a distribution

directly in the failure model that has previously been described.

The original example for the computation of composite strength was
based on the use of a single straight line, such as the latter portion of this
curve of Figure 19. It is clear that this can lead to an overestimate of the
composite strength. Having demonstrated the ease with which the experi-
mental fiber strength data can be simulated, it now remains to select an
appropriate compound distribution function and use it in the previously de-
rived statistical analysis. For example a Weibull distribution can be utilized
in the following form:

Bl-l Bl
f(o) = paléBlo exp (-CL150 )

+ (1 - p) a,88,0 exp (-a,60 %) (26)

and the associated cumulative distribution function;:

By B2
F (o) =1-p exp(-0,00 ") - (1 -p)exp (-a,d0 ) (27)

It is seen that for p equals either zero or one, the result reduces to
a simple Weibull distribution and for any p value this compound distribution
can be used in the preceding equations in exactly the same fashion as the

simple one was with only the sacrifice of algebraic simplicity.

Conclusions Regarding Tensile Failure

The tensile model indicates that randomly distributed fiber fractures
occur well below the ultimate composite strength. The statistical strength
characterization of the fibers determines the frequency of these fiber breaks.
The strength of the composite is determined by this and by the efficiency with
which the matrix limits the effect of the perturbation of the local stress field
produced by a fiber break, The need for statistical characterization of fibers

and for consideration of matrix deformations is strongly indicated. A new
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experimental technique for the evaluation of the tensile failure process has

been presented and the results support the analytical model.

The analysis does not include all possible detrimental effects and
hence it is perhaps best to view the results as indications of the potential
for advanced structural composites. These potentials are the major con-
clusions of the present study. Simply stated, the conclusion is that high
strength fibers used in an appropriate matrix can yield composites having
tensile strengths usually attained only in very short lengths of very small

diameter filaments.
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COMPRESSIVE STRENGTH

The problem considered is the compressive strength of a fibrous
composite formed by the set of parallel fibers imbedded in an otherwise
homogeneous matrix., The composite is considered to be subjected to com-
pressive load parallel to the fiber direction. It has been suggested by Dow
(Ref. 9) that the mode of failure for such a composite is the small wavelength
buckling of the fibers in a fashion analogous to the buckling of a column on an
elastic foundation. One of the motivations for such a composite failure model
is indicated in Figure 20. Photoelastic stress patterns are shown for three
individual glass fibers imbedded in an epoxy matrix which has been cured at
a temperature of about 250°F. As is well known, the shrinkage of the epoxy
from its cure temperature down to room temperature results in the frequently
observed elastic instability of the glass fiber. E-glass fibers of five, three
and one half, and one half mil diameter in three separate blocks of epoxy are
shown. It is clear from the repeated stress pattern that a buckling failure
has occurred. All three blocks consist of the same epoxy subjected to the
same cure conditions. The only apparent difference between specimens is
the difference in amplitude and wavelength of buckling. The shrinkage of the
epoxy resin provides a convenient means for applying a compressive strain to
this glass fiber and observing the resultant instability. The analytical model
of a column on an elastic foundation indicates that the buckling wavelength of
a circular column would be directly proportional to the fiber diameter (see
Ref. 10). The three fibers shown here are all in identical epoxy matrices
and hence the foundation modulus, although unknown, can be considered to be
the same in all cases., Thus, it would be expected that the buckling wavelength
would be linearly dependent upon the fiber diameter. Figure 21 shows the
measured experimental results. Here the buckle wavelength is plotted against
the fiber diameter on logarithmic paper so that a linear relationship between
the two appears as a 45° line on this graph. The three test points shown in
Figure 20 are plotted along with a best fit 45° line. The agreement between
this analytical curve and the test data indicates at least qualitatively that
there is some justification for considering the elastic instability mode as the

failure mode for the glass fibers.
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The problem of quantitatively evaluating this instability failure for
multiple fibers imbedded in the homogeneous matrix is not as straight-
forward. The analytical model considered in the present analysis is shown
in Figure 22. A series of parallel fibers are treated as a two dimensional
problem, so that the model consists of plates of thickness h separated by a
matrix of dimension 2c. Each fiber is subjected to a compressive load, P,
the fiber length is given by the dimension, L.. Now, two possibilities are
considered for the failure mode here., First, the fibers may buckle in
opposite directions in adjacent fibers as shown on the left portion of Figure
22 and the so-called extension mode occurs. This mode receives its name
from the fact that the major deformation of the matrix material is an extension
in the direction perpendicular to the fibers, The model considers that the
fibers are stiff relative to the matrix and that shear deformations in the fiber
can be neglected relative to those in the matrix, The second possibility is
shown on the right portion of the figure where adjacent fibers buckle in the
same wavelength and in phase with one another, so that the deformation of
the matrix materiai between adjacent fibers is primarily a shear deformation.
Hence, the shear mode label for this potential mode. The energy method for
evaluation of the buckling stress for these modes has been utilized, where the
procedure is to consider the composite stressed to the buckling load and then
to compare the strain energy in this compressed but straight deformation
pattern to a deformation pattern following an assumed buckling shape under
the same load. Thus, a change in the strain energy of the composite
consisting of the strain energy change in the fiber, & Vf, and the strain
energy change in the binder, AVb, can be compared to the change in the
potential energy associated with the shortening of the distance between the
applied loads at the end of the fibers, AT. The condition for instability is
given by equating the strain energy change to the work done by the external

loads during buckling. Details of the analysis are presented in Appendix C,

The results for the compressive strength, 0. for the extension mode

is given by:

ve By By He
g = 2v (28)
C f 3“ - vf
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The result for the shear mode is given by:

G
¢ = —2 (29)
c l-vf

These results are plotted in Figure 23 for E-glass fibers imbedded in an
epoxy matrix. The compressive strength of the composite is plotted as a
function of the fiber volume fraction, Ve The two curves represent the two fail-
ure modes considered. It is seen that for the low fiber volume fractions the
extension mode is the lower stress, while for high volume fractions of fibers
the shear mode predominates. The compressive strength of reasonable glass
reinforced plastic containing fiber volume fractions on the order of 0.6 to 0.7
is seen to be on the order of 450 to 600 ksi. Values of this magnitude do not
appear to have been measured for any realistic specimens. However, the
achievement of a strength of half a million psi in a composite of this type
would require an average shortening of greater than 5%. For the epoxy
materials used, such a shortening would result in a decrease in the effective
shear stiffness of the binder material because the proportional limit of the
matrix would be exceeded. It does appear necessary to modify the analysis

to consider inelastic deformation of the matrix material. A first simple
approximation to this has been provided by replacing the binder modulus in
the formulas previously shown by a modulus which varies linearly for the
epoxy from its elastic value at 1% strain to a zero value at 5% strain. The
result of this assumption is the curve labeled inelastic in Figure 23. Here it
is seen that for very high fiber volume fractions the strength is bounded and,
although higher than any results obtained to date, they are not unreasonably
high. The results of this study are presented in a somewhat different form

in Figure 24 where the average compressive strain at failure is plotted as a
function of the fiber volume fraction for composites having two different ratios
of fiber Young's modulus to binder shear modulus. Curves for the two failure
modes, that is extension and shear, are presented. The strength of the
composite is obtained simply from these curves by multiplying the shortening
by the product of fiber volume fraction and fiber Young's modulus. These

curves again indicate that the shear instability mode is predominant over the
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major range of interest for these ratios of fiber to binder moduli. Also
indicated is the fact that a substantial difference in the result is achieved for

a change in the ratio of fiber to binder moduli. Thus, the factor of 2 utilized
in the example here results in almost a factor of 2 on the results for the shear
mode. Thus, changes in the effective value of the shear stiffness of the binder
when stressed beyond the elastic limit of the material can have a substantial

effect on the predicted value of the composite.

The results presented so far are based on strain energy computations
which have involved some assumptions regarding the displacements, and hence,
it is no longer valid to treat the stress obtained as an upper bound of the
buékling stress. In order to investigate the nature of the approximation made
in the strain energy a more precise model must be considered. This is done
by treating the boundary value problem defined by considering an elastic
domain subjected to sinusocidal normal displacements on the boundary. The
strain energy in the binder material is evaluated by considering this strip as
a two-dimensional elastic domain. The equilibrium equation expressed in
terms of displacements can be used to obtain a solution to this problem by
following an approach used by Timoshenko (Ref. 10) for the related traction
boundary value problem. That is the displacements K and psl can be assumed
to be arbitrary functions of y multiplied by trigonometic functions of the
longitudinal direction x. Substitution of these displacements into the
equilibrium equations can be shown to yield an ordinary differential equation
for the function of y. The constants in this solution are cvaluated by con-
sidering the boundary conditions on the displacements. From this the strain
energy can be found and this strain energy can be used in the expression shown
previously to obtain a true bound on the compressive critical buckling stress.
This can be done under the assumption that the fiber is sufficiently
rigid so that shear deformations of the fiber can be neglected. It is also
possible to relax even this constraint and consider two adjacent elastic
domains; one representing the binder and one representing the fiber and to
have boundary conditions in the form of continuity of displacements and
normal tractions across the surface rather than in the form of prescribed

sinusoidal deformations. This approach requires further study.
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Another assessment of the results of the present analysis with
e xperiment can be obtained by utilizing existing results (Reference 11) for
hollow glass fiber composites. These results are shown in Figure 25. Here
a set of short compression columns fabricated from hollow glass fibers
imbedded in an epoxy matrix and tested in compression are plotted in the
form of the ratio of the strength to density ratio for a hollow glass fiber
composite normalized with respect to a composite containing solid E-glass
fibers with the same binder volume fraction. Each experimental point here
is for a composite containing a 30% binder on a volume basis and each point
represents the average of at least 5 tests of nominally identical specimens.
The fiber radius ratio, that is the ratio of the inner to the outer radii of the
hollow glass fibers, is the independent variable. The analysis indicates that
the stress to density curve would increase monotonically with the fiber radius
ratio over the range of & < 0.9. Itis seen that the experimental data appear

to have the analytical result as an upper bound.

Conclusions Regarding Compressive Strengths

It appears that the compressive strength of a fibrous composite load'ed
in a direction parallel to the fibers is governed by an instability mode analogous
to the buckling of a column on an elastic foundation. An analysis to assess the
quantitiative effect of the influence of constituent properties upon this buckling

stress has been presented.

The compression model indicates that the matrix shear stiffness is
the material property which has the most significant effect on composite
compressive strength. The choice of the failure mode is supported qualitatively
by experimental results for the compressive strength of hollow glass fiber

composites.

It appears that the use of matrix materials having shear moduli which
are moderate rather than small with respect to the fiber Young's modulus can
yield composites, of high modulus fibers, which have extremely high
compressive strength. Of course the binder must have these values at the

high strains associated with the very high composite compressive strengths.
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APPENDIX A

EFFECTIVE FIBER LENGTH

The definition of ineffective length, 6, involves the determination of
the shear stress distribution along the fiber-matrix interface. An analysis of
this problem has been presented for idealized fiber shapes without the effect
of surrounding fibers (ref. 12). An approximate solution similar to that of
ref. 13 is presented herein. The model used is shown in fig. 2 and consists
of a fiber surrounded by a matrix which in turn is imbedded within a composite
material. The latter has the average or effective properties of the composite
under consideration. This configuration is subject to axial stress and a shear

lag type analysis is utilized to estimate the stresses.

Load is applied parallel to the fiber direction. The fiber is assumed
to carry only extension and the matrix to transmit only shear stresses. No
stress is transmitted axially from the fiber end to the average material,
Shear stresses in the average material are considered to decay in a negligible

distance from the inclusion interface.

For equilibrium of a fiber element in the axial direction:

r do
f £
Tt 57 =0 (A-1)

where

shear stress in matrix material

= axial stress in fiber

For equilibrium of the composite in the axial direction:

r 2 Tr - T
S S b l¢ -7 (A-2)
r f Z a
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where

g
a

[+

axial stress in average material

I

applied axial stress

The displacements in the fiber, ug, and in the average material, u_,

a
define the binder shear strain, 6, as follows:

u, - uc = (rb - rf)‘y (A-3)

Differentiating eq. (A-3) twice and using the stress-strain relations

yields:
1 doa 1 dOf _ ry - T dZT (A-4)
Ea dz Ef dz Gb d?z
where
Ea = effective Young's modulus of the composite
Ef = Young's modulus of the fiber
Gb = shear modulus of the binder

Differentiating eq. (A-2) and substituting the result and eq. (A-1) into
eq. (A-4) yields:

T 2
4 -n%r =0 (A-5)
dz
where
2
nz ] 2G, . Eﬁ r,
Eplry -1 (ryd E.L 2 2
r - T
a b

The solution to eq. (A-5) is of the form

T = A sinh 11z + B cosh 7] z
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The boundary conditions are:

T(o) =0
olt) = 0
B =0
— 2
A Gb g r,
- 2 2
nEa (1-b - rf) (ra - Ty }) cosh n i
and
— 2 .
Gb g r sinh 7 z
T = 3 (A'b)

2
n Ea (rb - rf) (ra - Ty } cosh N4

From eqs. (A-11) and (A-16):

o = o Ta Ef <cosh Nz 1) (A-7)
£ - 2 2 2] \cosh n¢ ~ )
[Ea(r -rb)+Efrf]
Consider r >>r
a b
2G
2 b
n = (A-8)
rfEf (rb- rf)
and from eq. (A-18):
oE
3 f cosh Mz
O = - E [cosh‘n{ '1] (4-9)
The maximum axial stress is
o Ef
Cf {0) = 5 (A-10)
( - O a
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Using the results of this elastic analysis, the stress ratio, ¢, is
evaluated from the ratio of the stress at a distance 0 from the end of a given
fiber to the stress at the midpoint of a very long fiber. The stress at a point

at distance & from a fiber end is:

TE
~ f | cosh N(4-10)
% (4-0) = - Ea [ cosh 74 -1 (A-11)

The fiber efficiency, ¢, at this point is therefore defined by:

o, (t-19)
QD:_O'——(EY_ = l—coshné‘ﬁ'tanhn{Sinhné
zl
. (A-12)
for large £:
tanh 4 = 1
.o = 1- cosh nd6 + (cosh2 né - 1)1/’2 (A-13)
From which
1+ (1 cp)2
hnd = — A-14
cos ) T -0 ( )
and
1/2
o -1 [(V -l/2 1) Ef] cosh-1 [1 A L )2]
E? 2 f C; 2 {1 -7)
(A-15)
For the purposes of this analysis a value of ¢ = 0.9 is considered, and 0 is

evaluated for this stress ratio value Thus, effective length is that portion
of the fiber in which the average axial stress is greater than 90% of the stress
which would exist for infinite fibers. Fig. 3 shows the variation of ineffective

length with constituent moduli for various fiber concentrations,
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APPENDIX B

STATISTICAL MODELS FOR FIBER STRENGTH

A fiber is considered to consist of a chain of links. Any consistent
combination of link length and link strength distribution which combine to
reproduce the fiber strength data are acceptable. With link length defined as
in Appendix A, the statistical distribution of link strength is obtained from
experimental fiber strength distributions. Consider links characterized by
the distribution function f(0) and the associated cumulative distribution ¥ (0)
where:

g
F () = j'f(c)do (B-1)

o

For n such links forming a chain which fails when the weakest link fails the

distribution function g (0) for the chain is defined by:

g (0) = nf(o)[1 - F (0)]"} (B-2)

From this, the cumulative distribution function, G (0 ) for the fibers is

obtained:

g

G (o) = j' g (0) do (B-3)
(o]

LG =1-1-F@)]" (B-4)

The solution of the inverse problem is desired. That is, given the
fiber data, g (0 ) and G (0 ), define the link data for a link length, 6 . From
eq. (B-4):

Fo) - 1-[1-G(@)]'/" (B-5)

and thus from (B-1) and (B-5):

(1/n) -1
(o) = B9 1 .G (0] (B-6)

n
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As an example, consider fibers characterized by a strength

distribution of the Weibull (ref. 7) type:

g(G):LOﬁBOB_lexp(-LOLO’B) (B-17)

This form has been shown to characterize the experimental length L, to
strength, 0, relationship of fibers. Using equation (B-7) in (B-3) and (B-6)
yields:

f(o) = ad Bo’s’lexp (-aGUB) (B-8)
where:
L = nd

The constants & and 8 can be evaluated by using experimental strength-
length data. To do this, consider the mean fiber strength, Ef for a given

length which, is defined by:

@

'o'f = J' og (o) do . (B-9)
O

Substituting eq. (B-7) into (B-9) and integrating yields:

1

(La) VB 14+ L (B-10)

A logarithmic plot of the available data for Ef as a function of L will
define the constants. Such a plot is presented in fig. 10. The linearity of

the data support the choice of the distribution function given by eq. (B-7).

The constant B is an inverse measure of the dispersion of material
strength. Values of B between two and four correspond to brittle ceramics,
while a value of twenty is appropriate for a ductile metal (ref. 5). The

constant &, as seen from eq. (20), defines a characteristic stress level,

a'l/‘g.
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Most experimental data for glass fibers (e.g. ref. 8) indicate that a
plot of the type shown in fig. 10 should be bi-linear with the smaller slope in
the very short gage-length region. The following work is the analysis of a
simple model designed to illustrate a possible cause for this bi-linear
behavior. The model is presented to indicate how the behavior of such fibers

in a composite can be treated by the method of ref. 4.

Consider a rectangular distribution as shown in fig. 16a. For this:

f (o) :bia a<0 < b
(B-11)
f(o) =0 o < a
g >b
From (B-1) and (B-11):
F(o)zg-_a;l a <0 <b
(B-12)
F((o) =0 g <a
F(G) = 1 g >b
Substituting (B-11) and (B-12) into eq. (B-2) yields:
g < a
g@) =0
g >b
n b-0 n-l
g(c)z_g__a.<b"_a) a <0< b (B-13)
The mode of g (0) = 0% = a

Next consider the double rectangular distribution shown in fig. 17a.

Here:
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Substituting eqs.

f (o) =0 g <0

f (0) :F—-EO'_ O'lSO'SO'Z
2 1

f (0) = 0 02<cr<03

f (o) :H o, < 0 =0,
4 3

f (0) = 0 g >0,

(B-14) into eq. (B-1) yields:

F(@ =0 0<0l

0-0,
F (o) :p<————> o, £ 0 <0

0, - 9 1 2
Fo) = p 02<cr<03

o -0,

F (0) :p+(1-p)<04_03>03sosc4
Fo =1 o >0,

X

(B-14)

(B-15)

For the chain, substitution of eqs. (B-14) and (B-15) into eq. (B-2) yields:
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g{o) =0 o <o, 7
n-1
(0)——n2———[1- M 0o, s 0<g0
g - 0,-0 p o, -0 1 2
g(og) =0 0, <0 <0 > (B-16)
n-1
g(G):I;A;GP—)[(l-p)-(l-p%U—-—E—)] 0, < 0 <0,
4™ % 94 -9 3
g =0 o >0

This yields the distribution function shown in Figure 17c. The values of

the two peaks are:

(o) = —2PB (B-17)
g\ 3, - o

glo,) = 2tl-p)l ) (B-18)
3 0'4 - 0'3

It is seen that the mode changes from 03 to 0 at some value of n., The value

at which they are equal is plotted in fig. 18 and is obtained by setting:
g (o) = glo3) (B-19)
From eqs. (B-7) to (B-9):

o [+ (=)
0'2 - 0'1

P T g (1o (B-20]

The average strength for a given length fiber composed of n links taken

from the population characterized by eqs. (B-4) is found as follows:

T - f o g (0) do (B-21)
(o]
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o) n-1

2 o-0
= _ no p _ 1 -
5= 0-'___——0[1 P(o _01>] o + (B-22)

01 2 1 2
g n-1
4 o, -C
J =d - p)” (4 ) do
o 9479 9 -9
3
which yields
o, -0
= _ n 2 1 n+1
0—[01-02(1—p)]+m[1—(1—p) ]+
(B-23)
g, -0
n 4 3 n
(L-p) oy + 51 (L-P)

Eq. (B-23) is plotted in fig. 19 for selected values of p and . It is

seen that the bi-linear distribution is very well simulated.
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APPENDIX C

COMPRESSIVE STRENGTH OF FIBROUS COMPOSITES

The compressive strength of a fibrous composite is evaluated by
treating the elastic stability of a two-dimensional array of layers of fiber
and matrix material. The fibers are considered to be relatively stiff as
compared to the binder and hence shear deformations of the fiber are
neglected. Instability will be evaluated by utilizing the energy method. The
change in strain energy for the fiber, AVf, and the binder, AVb, as the
composite changes from a compressed but unbuckled configuration to the
buckled state will be equated to the work, A T, done by the fiber loads. Thus,

AVf+ AVb = AT (C-1)

For the two dimensional case the load per running inch on each fiber can be

expressed as the product of fiber stress, Sy and fiber thickness, h:

P=0nh (C-2)

The procedure then is to assume various buckle patterns and find the lowest
buckling load. 1If all terms in the strain energy are appropriately considered
each of these buckling stresses will provide an upper bound; and the lowest of
these values may be taken as a buckling load. The cases to be considered
herein are the two cases shown in Figure 22 where the buckling pattern in all
fibers is of the same wavelength with adjacent fibers cither in or out of phasce
with one another. The mixture of the two can be expected to have & buckling
stress larger than the smaller load for the two individual modes. Each fiber
will be assumed to buckle into the sinusoidal pattern expressed by the following

series in v, the displacement in thec y dircction:

(C-3)

.. a si nmwx
v = L 51N
n L
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For the extension mode, the tranverse strain is assumed to be

independent of the y direction so that:

<

€ = - (C-4)

and

v
o = E_ I (C-5)

The changes in strain energy associated with the axial and shear
stresses are considered negligible with respect to those due to the transverse

stresses. Thus

1
AVb = 5 J; cy ey‘,dv (C-6)

Substituting eqs. (C-3) to (C-5) into (C-6) yields:

E L

) 2
AVb = S z a (C-17)
n
From ref. 10 (in the present nomenclature)
TT4 th3 4 >
AVf R L n a, (C-8)
8 L n
and
2
R _ Pr 2 2
5T = 7= % n"a (C-9)
n
Substituting eqs. (C-7) to (C-9) into (C-1):
4
oy 2 2L Ey 2
2 ¥ n a 4y ———— ¥ a
m Ef h n TT4 h3E n
P - ___2—_ n C f n (C-lO)
12 L 2 2
2 n a
n
n
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Expression (C-10) is a minimum for one value of n, say m, hence

" E, h’ 24 LY E
0, = —ts |miip— b 1—2> (C-11)
cr 12 LL T ch Ef m

Since m is large it may be treated as a continuous variable and eq.

(C-11) can be minimized by setting

30,

f
SRR (C-12)
2
om
This yields
v E E. 2
o, =22t b f (C-13)
f . 3T - V)

where

_ h

Vi T BT 2e (C-14)
and for the composite stress, OC,
OC = V:f Uf
cr
v, Eb Ef 1/2
) = 2 —_— -

. CIC Ve R Vf) (C-15)

The critical strain, € ., can be evaluated from eq. (C-13). Thus,

1/2

1/2
€ = 2 M Eb C-16
cr 3(1 - Vfi }_Ef_ (C-16)
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The shear instability mode is evaluated in a similar fashion. Here
the displacements of all fibers are assumed to be of the same amplitude and
in phase with one another. The shear strains are assumed to be a function

of only the longitudinal coordinate, In the binder:

du aux
')’XY = -——Xax + —ay—' (C-l?)

Since the transverse displacement is independent of the transverse coordinate,

y:
o U.y ‘ du
= L (C-18)
0 X b dx f
Since the shear strain is independent of y:
duX 1
& ° Zc [ux (c) - u (—C)] (C-19)
Since the fiber shear deformation is negligible:
h du
Ux (e} = 2 Tdx (C-20)
f
Substituting (C-19) into (C-18):
dux h duY
dy - 2c dx (C-21)
f
Substituting (C-21) and (C-18) into (C-17):
h du
yxy = (l + Z) ——de (C-22)
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and

T = -
Gb yxy (C-23)
The changes in strain energy associated with the extensional stresses

are considered negligible for this case. Thus:

_ 1
AVb—TZ-

.(, Tey Yy &V (C-24)

Substituting egs. (C-3), (C-22) and (C-23) into (C-24) yields:
2 2
B h n 2 2
A Vb = Gb c <1 +-Z—E> (E) 5 a ' n (C-25)

Using eq. (C-25) in place of eq. (C-7) in eq. (C-1) and proceeding as

for the extension mode,

G T E 2
o, = — (bl — 2 d (mh> (C-26)
cr f f

Since L/m is the buckle wavelength, the second term in eq. (C-26) is

small for wavelengths large compared with the fiber diameter, and thc buckling

stress is given approximately by:

Gb
o, - — P (C-27)
fer ve (1 - ve)
and
G
¢ =P (C-28)
C l - v
f
¢ . o1 oo
cr vfil-vfs Ef (C-29)

The lower of the values given by egs. (C-15) and (C-28) is the best

estimate for the compressive strength.
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Table 1
Thin Fibrous Composite Tensile Tests

Specimen Maximum Maximum Number Fiber Area Maximum
Number Number of Load of Fibers (inz) Fiber Stress

Breaks (ksi)

Bl 37 210 125 1.272x1073 165. 1

B2 31 222 130 1.323 167.8

B3 34 221 130 1.323 167.0

B4 13 207 131 1.333 155.3

B5 24(36)* 197 129 1,313 150.0

Average stress 161.0

Standard deviation 7.1

Cl 21 195 125 1.272x10-3 153.3

Cc2 28 181 124 1. 262 143, 4

C3 19(37)* 184 126 1.283 143. 4

C4 33 196 126 1.283 152.8
C5 -- 200

(of 22 206 128 1.303 158.1

c7 20 203 122 1.242 163. 4

Average stress 152. 4

Standard deviation 7.1

Number in parentheses observed after maximum load.
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Figure 3. Ineffective Length of Fibers in Composites.
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NORMALIZED COMPOSITE STRENGTH,

Figure 7.
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Variation of Composite Tensile Strength with Fiber Volume Fraction
for Statistical Failure Model and for '"Rule of Mixtures Model.
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41.0%

Figure 12. Failure Sequence of Specimen Having Eb =V, 48
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Figure 12 (Continued)




Figure 12 (Concluded)



Figure 13. Failure Sequence of Specimen Having Eb =0.28




Figure 13 (Continued)



Figure 13 (Concluded)




a. Matrix Modulus = 0.48 x 106 psi

b. Matrix Modulus = 0,28 x 106 psi

Figure 14. Typical View of Tensile Failure Specimen of 99% of Ultimate
Strength. Fibers are 0.0035" Diameter E-glass.
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Figure 24l Experimental Results for Fiber Buckling Wavelength as a

Function of Fiber Diameter.
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